Algebra

Rząd Macierzy

Alexander Denisjuk

denisjuk@pjwstk.edu.pl

Polsko-Japońska Wyższa Szkoła Technik Komputerowych
zamiejscowy ośrodek dydaktyczny w Gdańsku
ul. Brzegi 55
80-045 Gdańsk
Rząd Macierzy

Najnowsza wersja tego dokumentu dostępna jest pod adresem

http://users.pjwstk.edu.pl/~denisjuk/
Macierze a układy równań liniowych

• Niech dana będzie macierz

\[
A = \begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1m} \\
a_{21} & a_{22} & \ldots & a_{2m} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nm}
\end{pmatrix}.
\]

• W przestrzeni \(\mathbb{R}^n \) rozważmy otoczkę liniową \(V \) układu kolumn macierzy \(A \):

\[
V = \langle A^{(1)}, A^{(2)}, \ldots, A^{(n)} \rangle = \left\langle \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix}, \ldots, \begin{pmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{nm} \end{pmatrix} \right\rangle.
\]
Niech dany będzie wektor $b \in \mathbb{R}^n$. Pytanie: czy wektor b należy do otoczki liniowej układu $\{ A^{(1)}, A^{(2)}, \ldots, A^{(n)} \}$?

Czy istnieją współczynniki $x_1, \ldots, x_m \in \mathbb{R}$, takie że

$$
\begin{bmatrix}
 a_{11} \\
 a_{21} \\
 \vdots \\
 a_{n1}
\end{bmatrix} x_1 +
\begin{bmatrix}
 a_{12} \\
 a_{22} \\
 \vdots \\
 a_{n2}
\end{bmatrix} x_2 + \cdots +
\begin{bmatrix}
 a_{1m} \\
 a_{2m} \\
 \vdots \\
 a_{nm}
\end{bmatrix} x_m =
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{bmatrix}
$$

czyli

$$
\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1m}x_m = b_1, \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2m}x_m = b_2, \\
 \cdots \cdots \cdots \cdots \cdots \cdots \\
 a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nm}x_m = b_n.
\end{cases}
$$
Oznaczenia dla sumowania

- \(x_1 + x_2 + \cdots + x_n = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i \)

- \(\sum_{i=1}^{n} (\lambda x_i) = \lambda \sum_{i=1}^{n} x_i \)

- \(\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i \)

- \(\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_{ij} \right) = \sum_{i,j} a_{ij} \)
Definicja rzędu macierzy

Definicja 1. *Rzędem macierzy* A nazywamy liczbę

$$\text{rank } A = \text{rank} \left\{ A^{(1)}, A^{(2)}, \ldots, A^{(n)} \right\} = \text{dim} \langle A^{(1)}, A^{(2)}, \ldots, A^{(n)} \rangle$$

Twierdzenie 2. rank A nie zmienia się po elementarnych przekształceniach macierzy A.

Dowód.

$$\sum_{i=1}^{m} \alpha_i A^{(i)} = 0 \iff \sum_{i=1}^{m} \alpha_i A'^{(i)} = 0$$

□
Rząd macierzy według wierszy

Definicja 3. *Rzędem macierzy* A *według wierszy nazywamy liczbę*

\[\operatorname{rank}_w A = \operatorname{rank} \{ A(1), A(2), \ldots, A(m) \} = \dim \langle A(1), A(2), \ldots, A(m) \rangle \]

Twierdzenie 4. $\operatorname{rank}_w A = \operatorname{rank} A$

Wniosek 5. $\operatorname{rank} A^t = \operatorname{rank} A$

Wniosek 6. $\operatorname{rank} A$ *nie zmienia się po elementarnych przekształceniach kolumn macierzy*
Rząd macierzy a układ równań liniowych

Twierdzenie 7. Ilość głównych niewiadomych układu $Ax = b$ nie zależy od sposobu sprowadzenia macierzy do postaci schodkowej i zgadza się z rank A

Dowód.

$$
\begin{pmatrix}
a_{11} & \ldots & a_{1k} & \ldots & a_{1l} & \ldots & a_{1s} & \ldots & a_{1m} \\
0 & \ldots & a_{2k} & \ldots & a_{2l} & \ldots & a_{2s} & \ldots & a_{2m} \\
0 & \ldots & 0 & \ldots & a_{3l} & \ldots & a_{3s} & \ldots & a_{3m} \\
& & & & & & & & \\
0 & \ldots & 0 & \ldots & 0 & \ldots & a_{rs} & \ldots & a_{rm} \\
0 & \ldots & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
& & & & & & & & \\
0 & \ldots & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0
\end{pmatrix}
$$
Twierdzenie Kroneckera-Capellego

Twierdzenie 8 (Kronecker-Capelli). *Układ $Ax = b$ ma rozwiązanie $\iff \text{rank } A = \text{rank}(A|b)$*
Rząd iloczynu macierzy

Twierdzenie 9. \(\text{rank } AB \leq \min \{ \text{rank } A, \text{rank } B \} \)

Dowód.

- Niech \(C = AB \)
- Dla wierszy \(C(i) \) i kolumn \(C(j) \) macierzy \(C \):
 \[C(i) = A(i)B, \quad C(j) = AB(j). \]
- Niech \(r_1 = \text{rank } A \) oraz \(A(1), \ldots, A(r_1) \) będą bazowymi
- \(A(k) = \sum_{i=1}^{r_1} \lambda_{ki} A(i) \) dla \(r_1 < k \leq n \)
- Więc \(C(k) = A(k)B = \left(\sum_{i=1}^{r_1} \lambda_{ki} A(i) \right) B = \sum_{i=1}^{r_1} \lambda_{ki} \left(A(i)B \right) = \sum_{i=1}^{r_1} \lambda_{ki} C(i) \) dla \(r_1 < k \leq n \)
- \(\langle C(1), \ldots, C(n) \rangle = \langle C(1), \ldots, C(r_1) \rangle \)
- \(\text{rank } C \leq r_1 \)
Twierdzenie 10. \(\text{rank } AB \leq \min \{ \text{rank } A, \text{rank } B \} \)

Dowód. cd.

- Analogicznie dla \(B \)
 - Niech \(r_2 = \text{rank } B \) oraz \(B^{(1)}, \ldots, B^{(r_2)} \) będą bazowymi
 - \(B^{(k)} = \sum_{j=1}^{r_2} \mu_{kj} B^{(j)} \) dla \(r_2 < k \leq m \)
 - Więc \(C^{(k)} = AB^{(k)} = A \left(\sum_{j=1}^{r_2} \mu_{kj} B^{(j)} \right) = \sum_{j=1}^{r_2} \mu_{kj} (AB^{(j)}) = \sum_{i=1}^{r_2} \mu_{kj} C^{(j)} \) dla \(r_2 < k \leq n \)
 - \(\langle C^{(1)}, \ldots, C^{(m)} \rangle = \langle C^{(1)}, \ldots, C^{(r_2)} \rangle \)
 - \(\text{rank } C \leq r_2 \)

\(\Box \)
Macierze kwadratowe

- $M_n(\mathbb{R}^n) = M_n$ zbiór macierzy kwadratowych $n \times n$
- $I \in M_n$ macierz jednostkowa

- elementy macierzy jednostkowej $\delta_{ij} = \begin{cases} 1, & \text{jeżeli } i = j, \\ 0, & \text{jeżeli } i \neq j \end{cases}$ (symbol Kroneckera)

- $\forall A \in M_n$, $AI = IA = A$
- $I(\lambda) = \lambda I$ macierz skalarna
- $\forall A \in M_n$, $AI(\lambda) = I(\lambda)A = A$

Twierdzenie 11. Niech $Z \in M_n$ praz $\forall A \in M_n$, $AZ =ZA$. Wtedy $Z = I(\lambda)$.

Dowód. E_{ij}
Macierz nieosobliwa

Definicja 12. • Macierz $A \in M_n$ jest nieosobliwą, jeżeli $\text{rank } A = n$.
• Macierz $A \in M_n$ jest odwracalną, jeżeli istnieje A^{-1} ($AA^{-1} = I$).

Twierdzenie 13. Macierz jest odwracalną wtedy i tylko wtedy, gdy jest nieosobliwą

Dowód. 1. $n = \text{rank } I = \text{rank } A^{-1}A \leq \text{rank } A$

2. (a) $\mathbb{R}^n = \langle E^{(1)}, \ldots E^{(n)} \rangle = \langle A^{(1)}, \ldots A^{(n)} \rangle$

(b) $E^{(j)} = \sum_{i=1}^{n} a'_{ji} A^{(i)}$

(c) $I = AA'$

Wniosek 14. Niech $A \in M_n$ będzie macierzą nieosobliwą. Wtedy A^t też jest macierzą nieosobliwą oraz $(A^t)^{-1} = (A^{-1})^t$.
Mnożenie przez macierz nieosobliwą

Twierdzenie 15. Niech \(B \) i \(C \) będą macierzami nieosobliwymi względnie \(m \times m \) oraz \(n \times n \). Wtedy dla dowolnej \(m \times n \) macierzy \(A \)

\[
\text{rank } BAC = \text{rank } A
\]

Dowód. \(\text{rank } BAC \leq \text{rank } BA = \text{rank } BA(CC^{-1}) = \text{rank}(BAC)C^{-1} \leq BAC \)

Wniosek 16. Niech \(A, B \in M_n \) oraz \(AB = I \) (lub \(BA = I \)). Wtedy \(B = A^{-1} \).

Wniosek 17. Niech \(A, B, \ldots, C, D \in M_n \) będą nieosobliwe. Wtedy \(AB \ldots CD \) też będzie macierzą nieosobliwą, oraz

\[
(AB \ldots CD)^{-1} = D^{-1}C^{-1} \ldots B^{-1}A^{-1}
\]
Macierze elementarne — $F_{s,t}$

- $F_{s,t} = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \cdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{pmatrix}$, $s \neq t$

- $F_{s,t} = I - E_{ss} - E_{tt} + E_{st} + E_{ts}$

- $F_{s,t}A \iff$ zamiana wierszy $A(s)$ i $A(t)$
Macierze elementarne — $F_{s,t}(\lambda)$

- $F_{s,t}(\lambda) = \begin{pmatrix} 1 & \cdots & \lambda \\ \cdots & 1 & \cdots \\ 1 & \cdots & 1 \end{pmatrix}$, $s \neq t$

- $F_{s,t}(\lambda) = I + \lambda E_{st}$

- $F_{s,t}(\lambda)A \iff A(s) \sim A(s) + \lambda A(t)$
Macierze elementarne — $F_s(\lambda)$

- $F_s(\lambda) = \begin{pmatrix} 1 & \cdots & \lambda & \cdots & 1 \\ \vdots & \ddots & \lambda & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 1 \\ \lambda & \cdots & \cdots & \cdots & \lambda \end{pmatrix}$, $\lambda \neq 0$
- $F_s(\lambda) = I + (\lambda - 1)E_{ss}$
- $F_s(\lambda)A \iff A_{(s)} \sim \lambda A_{(s)}$
Twierdzenie 18. Niech \(A \in M_n \) będzie nieosobliwą. Wtedy za pomocą przekształceń elementarnych \(A \) można sprowadzić do postaci macierzy jednostkowej.

Dowód. 1. Sprowadzamy do postaci schodkowej

2. Sprowadzamy do postaci jednostkowej

Wniosek 19. Niech \(A \in M_n \) będzie nieosobliwą. Wtedy za pomocą mnożenia przed macierze elementarne \(A \) można sprowadzić do postaci macierzy jednostkowej:

\[
I = P_k \ldots P_1 A,
\]

gdzie \(P_1, \ldots, P_k \) — są macierze elementarne.

Wniosek 20.

\[
P_k \ldots P_1 = A^{-1}
\]
Obliczenie macierzy odwrotnej

\[(A|I) \xrightarrow{P_1} (P_1 A|P_1) \xrightarrow{P_2} (P_2 P_1 A|P_2 P_1) \xrightarrow{\ldots} \ldots \xrightarrow{P_k} (P_k \ldots P_2 P_1 A|P_k \ldots P_2 P_1) = (I|A^{-1})\]

Przykład 21.

1. \[
\begin{pmatrix}
0 & 2 & 0 \\
1 & 1 & -1 \\
2 & 1 & -1
\end{pmatrix}^{-1} = \begin{pmatrix}
0 & -1 & 1 \\
\frac{1}{2} & 0 & 0 \\
\frac{1}{2} & -2 & 1
\end{pmatrix}
\]

2. \[
\begin{pmatrix}
-1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 \\
1 & 1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1
\end{pmatrix}^{-1} = \begin{pmatrix}
-\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{1}{4}
\end{pmatrix}
\]